Self-heat Modeling of Multi-finger n-MOSFETs for RF-CMOS Applications

Hitoshi Aoki and Haruo Kobayashi

Faculty of Science and Technology,
Gunma University

(RMO2D-3)

RFIC – Tampa 1-3 June 2014
Outline

• Research Background
• Purposes of This Work
• Investigation of Self-heating in a Multi-finger n-MOSFET with a 2-D Device Simulator
• Model Derivations
• Measurements and Model Verifications
• Summary and Future Research
Outline

➢ Research Background
 • Purposes of This Work
 • Investigation of Self-heating in a Multi-finger n-MOSFET with a 2-D Device Simulator
 • Model Derivations
 • Measurements and Model Verifications
 • Summary and Future Research
Research Background (1)

• A multi-finger structure is popularly used in MOSFETs for various RF-CMOS circuits including power amplifiers, mixers, and oscillators.

• There is an inconsistency between S-parameters and static drain current simulations despite accurate model parameter extractions.
Research Background (2)

• In bulk MOSFETs for the multi-finger structure, self-heating effect (SHE) may occur especially if shallow trench isolation (STI) technology is adopted.
Research Background (3)

• A sub-circuit based self-heat model does not converge in large circuits

1. Temperature terminals are added to the model equivalent circuit as a sub-circuit

\[T = T_0 + \left(I_D V_{DS} \right) Z_{th} \]

Rises in device temperature

Ambient temperature

2. Operation temperature

\[Z_{th} \] : Thermal Impedance

\[V_{DS}, I_D \] : Drain Voltage and Current

3. Main model circuit simulation
Outline

• Research Background

➤ Purposes of This Work

• Investigation of Self-heating in a Multi-finger n-MOSFET with a 2-D Device Simulator

• Model Derivations

• Measurements and Model Verifications

• Summary and Future Research
Purposes of This Work

• To analyze self-heat mechanisms in multi-finger n-channel MOSFETs

• To develop a general self-heat model without using thermal sub-circuits

• To analyze and modeling fin-number dependencies of thermal resistance with DC and S-parameter measurements and simulations
Outline

• Research Background

• Purposes of This Work

 ➢ Investigation of Self-heating in a Multi-finger n-MOSFET with a 2-D Device Simulator

• Model Derivations

• Measurements and Model Verifications

• Summary and Future Research
Device Simulation of Self-heating Induced Temperature Distribution

- Simulated with a 2-D device simulator (PISCES-2HB)
- A slow pulsed DC source was used for better convergence
Dependence of ΔT on the number of fins

- The gate width of each fin is 20 μm
- Simulated ΔT is obtained at the center fin
- Measurement was made by using DC source/monitor
Outline

- Research Background
- Purposes of This Work
- Investigation of Self-heating in a Multi-finger n-MOSFET with a 2-D Device Simulator

➤ Model Derivations

- Measurements and Model Verifications
- Summary and Future Research
Temperature Dependence on Resistance

The DC and Isothermal current is written as

\[I_{ds}(V_{ds}, T_{dev}) = I_{iso}\left[V_{ds}, R_{th} \cdot V_{ds} \cdot I_{ds}(V_{ds}, T_{dev}) + T_{dev}\right] \tag{1} \]

\(\Delta T \) is defined as

\[\Delta T = I_{ds} \cdot V_{ds} \cdot R_{th} \tag{2} \]

\(R_{th} \) can be written as an electrical resistance equation by

\[R_{th} = \rho \frac{L}{S} \tag{3} \]

Temperature dependence is given by

\[R_{th}(T_{dev} + \Delta T) = \rho(T_{dev} + \Delta T)\frac{L}{S} \tag{4} \]
Thermal Resistance

Since ρ is linearly proportional to the rise in temperature, we have

$$\rho(T_{dev} + \Delta T) = \rho(T_{dev}) + c \cdot \Delta T$$ \hspace{1cm} (5)

By plugging eq. (5) into eq. (4), we obtain

$$R_{th}(T_{dev} + \Delta T) = R_{th0} + c \cdot \frac{L}{S}(T_{dev}) \cdot R_{th0} \cdot \Delta T$$ \hspace{1cm} (6)

Now we define K_{th} as

$$K_{th} = c \cdot \frac{L}{S}(T_{dev}) \cdot R_{th0}$$ \hspace{1cm} (7)

R_{th} can be simply represented as

$$R_{th} = R_{th0} + K_{th} \cdot \Delta T$$ \hspace{1cm} (8)
Thermal Impedance

For AC analysis, thermal capacitance, C_{th}, should be included in parallel with R_{th}, which is written as

$$Z_{th} = \frac{R_{th}}{1 + j \cdot \omega \cdot C_{th} \cdot R_{th}}$$ \hspace{1cm} (9)

Now eq. (2) becomes

$$\Delta T = I_{ds} \cdot V_{ds} \cdot Z_{th}$$ \hspace{1cm} (10)
Fin-number Dependence on R_{th}

R_{th} is proportional to the number of fins, NF, of n-MOSFETs. R_{th} is a linear function as

$$R_{th}^{NF} = A \cdot NF + R_{th}$$ \hspace{1cm} (11)

Z_{th} is replaced with

$$Z_{th}^{NF} = \frac{R_{th}^{NF}}{1 + j \cdot \omega \cdot C_{th} \cdot R_{th}^{NF}}$$ \hspace{1cm} (12)
Drain Current with Self-heating

Temperature dependence of effective mobility is referred as

\[\mu_{\text{eff}}(T) = \mu_{\text{eff}}(T_{\text{dev}}) \frac{T}{T_{\text{dev}}} \] \hspace{1cm} (13)

Effective mobility with self-heating can be

\[\mu_{\text{eff}}(T_{\text{dev}} + \Delta T) = \frac{\mu_{\text{eff}}}{1.0 + \frac{\Delta T}{T_{\text{dev}}}} \] \hspace{1cm} (14)

Finally, a drain current with self-heating of a multi-finger n-MOSFET is written as

\[I_{d_{\text{s-th}}} = \frac{I_{ds}}{1.0 + \frac{\Delta T_{NF}}{T_{\text{dev}}}} \] \hspace{1cm} (15)
Outline

- Research Background
- Purposes of This Work
- Investigation of Self-heating in a Multi-finger n-MOSFET with a 2-D Device Simulator
- Model Derivations
- Measurements and Model Verifications
- Summary and Future Research
BSIM6 Model as a Modeling Vehicle

BSIM6 model

• is continuous in all operation regions
• has accurate derivatives to predict harmonic distortion
• is satisfied both Gummel symmetry and AC symmetry
• has better physical capacitance behavior
• supports Verilog-A code which is supplied by the authors
‘Cold’ DC Measurement (1)

- AC conductance method* with a Network Analyzer (‘Cold’ DC measurement) is developed

\[
\frac{dI_d}{dV_d} = \frac{\partial I_d}{\partial T} \cdot \frac{\partial T}{\partial V_d} + \frac{\partial I_d}{\partial V_d} \bigg|_{T_{dev}}
\]

Can be neglected at high frequencies

‘Cold’ DC Measurement (2)

\[S_{22} \]

\[S_{22} - V_d \]

\[G_{ds} - V_d \]

\[I_d - V_d \]
Drain current characteristics of 64-fin n-MOSFET

- 'Cold' DC
- PISCES-2HB Simulation
- Static DC
Model Parameter Extractions

1. Input process parameters for BSIM6
2. DC I-V measurement
3. Measurements of S-parameters and de-embedded parasitic components, which are used for ‘Cold’ DC calculations and AC parameter extractions
4. Extractions of DC parameters including BSIM6 and SHE parameters
5. AC parameter (L, C, and R) extractions
6. Model verifications with small circuit modules

RFIC – Tampa 1-3 June 2014
DC Drain Current Characterization of 16-fin n-MOSFET

- Measured
- Proposed Model
- BSIM6

I_d [mA] vs. V_d [V]

RFIC – Tampa 1-3 June 2014
DC Drain Current Characterization of 64-fin n-MOSFET

![Graph showing measured and proposed model currents vs. voltage]

- Measured
- Proposed Model
- BSIM6

Integrated Circuits Conference (RFIC) – Tampa 1-3 June 2014
DC Drain Current Characterization of 128-fin n-MOSFET

![Graph showing measured and proposed model for drain current (I_d) vs. drain voltage (V_d). The graph includes data points and lines for measured data, proposed model, and BSIM6 model.]
S_{21} Characterization of 16-fin n-MOSFET

S_{21} [dB]

Measured
Proposed Model
BSIM6

Frequency [GHz]

RFIC – Tampa 1-3 June 2014
S_{21} Characterization of 64-fin n-MOSFET

![Graph showing S_{21} vs Frequency]

- Measured
- Proposed Model
- BSIM6
Characterization of 128-fin n-MOSFET

\(S_{21} \) vs Frequency [GHz]

- **Measured**
- **Proposed Model**
- **BSIM6**

RFIC – Tampa 1-3 June 2014
S_{11} Characterization of 128-fin n-MOSFET

Measurement

Proposed Model

frequency

RFIC – Tampa 1-3 June 2014
Simulation Speed Comparison of n-MOSFETs Ring Oscillators

<table>
<thead>
<tr>
<th># of Stages</th>
<th>17</th>
<th>35</th>
<th>71</th>
<th>143</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSIM6 simulation time [sec]</td>
<td>0.32</td>
<td>2.93</td>
<td>4.81</td>
<td>9.92</td>
</tr>
<tr>
<td>Proposed Model simulation time [sec]</td>
<td>0.34</td>
<td>2.96</td>
<td>4.91</td>
<td>10.86</td>
</tr>
</tbody>
</table>

- HSPICE was used for the simulations on Windows PC (Pentium i5)
- Each stage consists of a 128-fin n-MOSFET
Outline

• Research Background
• Purposes of This Work
• Investigation of Self-heating in a Multi-finger n-MOSFET with a 2-D Device Simulator
• Model Derivations
• Measurements and Model Verifications

➤ Summary and Future Research
Summary

• SHE has been verified with a 2-D device simulator
• The proposed model was implemented into BSIM6 model with the Verilog-A language
• The proposed model has been verified with DC and small-signal S-parameter measurements
• The self-heat model can be applied to other MOSFET models
Future Research

• Since the Verilog-A code itself is not so fast for circuit simulation, the proposed model will be converted to a C code model for practical use.

• Thermal capacitance measurement and the extraction will be developed for more gate fins of multi-finger MOSFETs.

• A temperature-dependent method for circuit simulations will be considered.
APPENDIX
Verilog-A Source Implementations

- **Time dependent heating implementation**

 \[
 T_{dev} = \text{idt}((I_{ds} \times T_e0 / T_{dev} \times v_{ds} - (T_{dev} - T_{e0}) / (R_{TH} + (T_{dev} - T_{e0}) \times K_{TH} \times R_{TH})) + T_{e0};
 \]

- **Small-signal AC simulations**

  ```
  if ((COSELFHEAT == 1) && analysis("ac"))
  begin
    freq = 1.0 / (2.0 * `PI * $realtime());
    cdrain = I_{ds} / (1.0-2.0*`PI*freq*R_{TH}*C_{TH});
  end
  ```