Multi-bit Sigma-Delta TDC Architecture for Digital Signal Timing Measurement

S. Uemori, M. Ishii, H. Kobayashi, O. Kobayashi, T. Matsuura, K. Niitsu, F. Abe, D. Hirabayashi

Gunma University
STARC
Presented by Daiki HIRABAYASHI (平林大樹)
Outline

► Research Objective
► Single-Bit & Multi-Bit ΣΔ TDCs
► Multi-Bit ΣΔ TDC with DWA
► Multi-Bit ΣΔ TDC with Self-Calibration
► Circuit Design
► Conclusion
Outline

► Research Objective

► Single-Bit & Multi-Bit ΣΔ TDCs
► Multi-Bit ΣΔ TDC with DWA
► Multi-Bit ΣΔ TDC with Self-Calibration

► Circuit Design
► Conclusion
Research Purpose

- Testing timing difference between two repetitive digital signals.
 Ex. Data and clock in Double Data Rate (DDR) memory

- Short testing time
- Good accuracy

Implemented with small circuitry
Our Work

Using Multi-bit $\Sigma\Delta$ Time-to-Digital Converter (TDC)

- Repetitive digital signals
 $\Sigma\Delta$ TDC can be used
- Simple circuit
- Fine time resolution

<table>
<thead>
<tr>
<th></th>
<th>Testing time</th>
<th>Linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-bit</td>
<td>Long</td>
<td>Good</td>
</tr>
<tr>
<td>Multi-bit</td>
<td>Short</td>
<td>Bad</td>
</tr>
</tbody>
</table>

due to delay elements mismatches

Two methods for their compensation
- Data-weighted-averaging (DWA)
- Self-calibration
Outline

► Research Objective

► Single-Bit & Multi-Bit $\Sigma\Delta$ TDCs

► Multi-Bit $\Sigma\Delta$ TDC with DWA

► Multi-Bit $\Sigma\Delta$ TDC with Self-Calibration

► Circuit Design

► Conclusion
Single-Bit ΣΔ TDC

- Measurement of timing T between repetitive CLK1 and CLK2.
- Number of 1’s at D_{out} is proportional to T.
- Time resolution becomes finer as measurement time becomes longer.
Multi-Bit $\Sigma \Delta$ TDC

- 3-bit: $2^3 - 1 = 7$ comparators and delays
- Fine time resolution with a given measurement time

Shorter measurement time with a given time resolution

- TDC non-linearity due to mismatches among delay cells.
Multi-Bit ΣΔ TDC

- 3-bit: $2^3 - 1 = 7$ comparators and delays
- Fine time resolution with a given measurement time
- Shorter measurement time with a given time resolution
- TDC non-linearity due to mismatches among delay cells.
Multi-Bit ΣΔ TDC

- 3-bit: $2^3 - 1 = 7$ comparators and delays
- Fine time resolution with a given measurement time

\[\text{Shorter measurement time with a given time resolution} \]

- TDC non-linearity due to mismatches among delay cells.
Multi-Bit $\Sigma\Delta$ TDC

- **3-bit**: $2^3 - 1 = 7$ comparators and delays
- Fine time resolution with a given measurement time

Shorter measurement time with a given time resolution

- TDC non-linearity due to mismatches among delay cells.
Difference in Measurement Time

- **Simulation conditions**

<table>
<thead>
<tr>
<th></th>
<th>1-bit ΣΔ TDC</th>
<th>3-bit ΣΔ TDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising timing edge difference (T)</td>
<td>-0.9 ~ 0.9ns (Resolution : 0.04ns)</td>
<td>-0.9 ~ 0.9ns (Resolution : 0.04ns)</td>
</tr>
<tr>
<td>Delay time (τ)</td>
<td>1ns</td>
<td>0.145ns</td>
</tr>
<tr>
<td>The number of digital outputs</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- **A rising number of outputs for the interval T**

✓ Multi-bit takes short measurement time for a given time resolution ⇒ Low cost
Outline

► Research Objective
► Single-Bit & Multi-Bit ΣΔ TDCs
► Multi-Bit ΣΔ TDC with DWA
► Multi-Bit ΣΔ TDC with Self-Calibration
► Circuit Design
► Conclusion
DWA (Data Weighted Averaging)

- Flash ADC outputs shuffled by DWA logic, fed into MUXs as select signals

- Delay mismatch effects moved to high-frequency (noise-shaping)
Noise-Shaping

\[Y(z) = X(z) + (1 - 1/Z)\Delta\tau(z) \]

Delay mismatch \(\Delta\tau \) is first-order noise-shaping.
DWA & Noise Shaping

- Delay τ: integration & differentiation
- Delay mismatch $\Delta\tau$: differentiation

![Diagram of delay cell mismatch effects]

Without DWA:

With DWA:
DWA Operation

Passing a baton in relay race!
DWA Effect

- Delay τ: integration & differentiation
- Delay mismatch $\Delta \tau$: differentiation

Measurement T

T is DC signal.

Without DWA

With DWA

Mismatch effects reduction at DC
Simulation of $\Sigma\Delta$ TDC with DWA

- Output: 99 points
- Output: 599 points

- Reduce the effect of delay mismatches.
 - $\Sigma\Delta$ TDC linearity is improved.
Outline

- Research Objective
- Single-Bit & Multi-Bit ΣΔ TDCs
- Multi-Bit ΣΔ TDC with DWA
- Multi-Bit ΣΔ TDC with Self-Calibration
- Circuit Design
- Conclusion
Self-calibration circuit: inverter, MUX, counter, memory

Measure delay values and store them in memory.
Self-Measurement of Delay

- Ring oscillator with a delay cell to be measured.
- Counter measure the number of the pulses.
- $\Delta \tau_1$ can be calculated.
- Measured delay values are stored in memory.
Time Signal & Ring Oscillator

Measurement: \(\tau + \Delta \tau_1 \)

Ring oscillator

Möbius strip
Self-Measurement of Delay

Measurement: $\tau + \Delta \tau_1$

Oscillation frequency

$$f = \frac{1}{2(\tau' + \tau + \Delta \tau_1)}$$

Measure $\Delta \tau_2, \Delta \tau_3, \Delta \tau_4, \ldots, \Delta \tau_N$ one by one.

$\Delta \tau_1$ can be calculated from the oscillation frequency
Essence of Proposed Method

- All operations are done in **digital domain**.
- Signal is **Time** instead of **Voltage**.

Easy, accurate measurement of $\Delta \tau$

Time flies like an arrow!
Proposed Error Correction Scheme

- Obtain TDC raw output (D_{out}) for two input clocks.
- Read delay values from memory, and compensate for the output based on them.
Simulation of Self-Calibration

- Output: 99 points

- Output: 599 points

ΣΔ TDC linearity is improved.
Outline

- Research Objective
- Single-Bit & Multi-Bit \(\Sigma \Delta \) TDCs
- Multi-Bit \(\Sigma \Delta \) TDC with DWA
- Multi-Bit \(\Sigma \Delta \) TDC with Self-Calibration

- Circuit Design

- Conclusion
Single-Bit ΣΔ TDC

Phase Frequency Detector

Charge Pump with Operational Amplifier

PFD + Integrator

Up

Down

Dout

clk
Multi-Bit ΣΔ TDC

Delay cell array
Circuit Design of Multi-Bit ΣΔ TDC

Array of comparators whose outputs are connected to MUX select signals.
Simple digital circuit:
Two Registers, Encoder, Adder, Barrel Shifter
Outline

► Research Objective

► Single-Bit & Multi-Bit ΣΔ TDCs

► Multi-Bit ΣΔ TDC with DWA

► Multi-Bit ΣΔ TDC with Self-Calibration

► Circuit Design

► Conclusion
Circuit Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>Flash TDC</th>
<th>1-bit $\Sigma\Delta$ TDC</th>
<th>Multi-Bit $\Sigma\Delta$ TDC (without correction)</th>
<th>Multi-Bit $\Sigma\Delta$ TDC (with correction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuitry</td>
<td>😞 😞</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
</tr>
<tr>
<td>Resolution</td>
<td>😞 😞</td>
<td>😞</td>
<td>😊</td>
<td>😊</td>
</tr>
<tr>
<td>Accuracy</td>
<td>😞</td>
<td>😊</td>
<td>😞 😞</td>
<td>😊</td>
</tr>
<tr>
<td>Time</td>
<td>😊</td>
<td>😞</td>
<td>😊</td>
<td>😊</td>
</tr>
</tbody>
</table>
We propose to use $\Sigma\Delta$ TDC for digital signal timing measurement.

Multi-bit $\Sigma\Delta$ TDC.
- Short measurement time
- Fine time resolution.
- Non-linearity due to mismatches among delay cells.

Two techniques to improve linearity
- DWA
- Self-Calibration (signal is “time”)

Low cost, high quality digital timing test can be realized.
Appendix
• Arbitrary digital timing signals can be measured one input.
• Circuitry is large.
• Time resolution is τ.

• Measured repetitive digital signals.
 ➢ High quality testing is required.

Arbitrary signals
 ➢ T is changed.

Repetitive signals
 ➢ T is constant.
How to Calculate the Delay Time

\[f_{osc}^k \approx \frac{M_k}{T_{ref}} = \frac{1}{2(\tau' + \tau_k)} \]

\[f_{osc}^0 \approx \frac{M_0}{T_{ref}} = \frac{1}{2\tau'} \]

\[\tau_k = \frac{1}{2} \left(\frac{1}{f_k} - \frac{1}{f_0} \right) \approx \frac{T_{ref}}{2} \left(\frac{1}{M_k} - \frac{1}{M_0} \right) \quad \text{k=1, 2, \ldots, } 2^{N-1} \]
各遅延値に重みをもたせる
測定にはN-bit で Nステップかかる
Comparison of Linearity

- 3-bit ΔΣ TDC (Delay Time(Ideal) : \(\tau = 0.145\text{ns} \))

Output pulses : 99

- Ideal state : The error is from -2ps to +2ps.
- After calibration : The error is from -2.5ps to +2.5ps.
 - The linearity is improved.
シグマデルタ型TDC回路の動作①

- CLK1とCLK2を入力
- 比較器出力により経路選択
 ➢ CLK1a, CLK2aを得る
タイムジェネレータによりMask信号（=速い方の信号）を発生させる
- Mask信号とCLK1a, CLK2aとの論理積をとり、立下りを合わせる
- CLK1b, CLK2bを得る
シグマデルタ型TDC回路の動作③

- CLK1bとCLK2bとの差を取り結果のCLKינを積分
- 比較器でINT_outを0と比較し、出力D_outを得る
 ➢ 次のクロックでの経路を制御
タイミングチャート（$D_{out}=1$のとき）

CLK1

CLK2

CLK1a

CLK2a

Mask=CLK2a

CLK1b

CLK2b

CLK_{in}

INT_{out}

CK

T_d
タイミングチャート($D_{out}=0$のとき)

CLK1

CLK2

CLK1a

CLK2a

Mask=CLK1a

CLK1b

CLK2b

CLK_{in}

INT_{out}

CK

T

τ

T_d